Title	Sublingual Film of Salmon Calcitonin Loaded Hydroxyapatite Nanoparticles as a
	Non-Invasive Alternative to Parenteral Administration
Keywords	Osteoporosis, Salmon Calcitonin, Hydroxyapatite, Film, Sublingual
(up to 5)	
Authors	<u>Darsheen J. Kotak¹</u> , Padma V. Devarajan ¹
	¹ Department of Pharmaceutical Sciences and Technology, Institute of Chemical
	Technology, (Deemed University) N.P. Marg, Matunga, Mumbai- 400019,
	Maharashtra, India
Abstract	Salmon Calcitonin(SCT) a peptide, is a drug of choice for Osteoporosis. It undergoes
	rapid enzymatic degradation and hence is administered as subcutaneous injection. In
	the present study we report a sublingual film of SCT loaded Hydroxyapatite
	nanoparticles(HAP-NP) as a non-invasive and patient friendly alternative to the
	subcutaneous injection. Surface stabilized spherical HAP-NP were prepared by aqueous
	precipitation at pH 12 using an anionic stabilizing agent. The HAP-NP were centrifuged
	washed, resuspended in pH 7.4 and SCT added to the dispersion. SCT being cationic at
	pH 7.4 was readily loaded onto HAP-NP by ionic interaction with high entrapment
	efficiency of >80%. The SCT-HAP-NP exhibited an average size ~100 nm, polydispersity
	index < 0.2 and zeta potential of < -25 mv. Fourier Transform Infra-Red(FTIR) spectra
	confirmed ionic interaction of cationic SCT with the negatively charged HAP-NP. DSC
	and XRD indicated amorphization of SCT. Physical stability of SCT was confirmed by
	Circular dichroism while HPLC analysis confirmed chemical stability over 3 months as
	per ICH guidelines. SCT-HAP-NP were dispersed in aqueous polymer solution, cast on a
	plastic liner on a Mathis Coater and immediately freeze dried to obtain a film wherein
	20X20mm contained 200iu of SCT. The film was optimized by Box-Behnken design.
	Concentration of HPMC, PVA and propylene glycol were the independent variables
	while tensile strength(TS), disintegration time(DT) and particle size of HAP-NP were the
	dependent variables. Optimized batch exhibited TS ~4.5 N/mm² and DT<60 seconds. No
	change in size of HAP-NP was observed. Stability of SCT in the film was confirmed. A
	comparative in-vivo pharmacokinetic study in New Zealand rabbits of the SCT-HA-NP
	film with the subcutaneous Injection(~200iu/rabbit) revealed good bioavailability of
	18.2% with the sublingual SCT-HAP-NP film. The sublingual SCT-HAP-NP film exhibits
	great promise as a non invasive delivery system for osteoporosis.
References	1) Dobrovolskaia MA et al., Nanoletters, 2008, 8: 2180–7
	2) Zhengrong Cu et al., Pharmaceutical Research, 2002,19: 12